

Talk Overview

- Progress on Sequoia
- Hyperion Data Intensive Testbed
- Lustre operational improvements
- Next generation tri-Laboratory capacity procurement now under way

Sequoia Hierarchal Hardware Architecture in Integrated Simulation Environment

- Sequoia Statistics
 - 20 PF/s target
 - Memory 1.6 PB, 4 PB/s BW
 - 1.5M Cores
 - 3 PB/s Link BW
 - 60 TB/s bi-section BW
 - 0.5-1.0 TB/s Lustre BW
 - 50 PB Disk
- ■8.0MW Power, 3,500 ft²
- Third generation IBM BlueGene
- Challenges
 - Hardware Scalability
 - Software Scalability
 - Applications Scalability

DAWN

Sequoia Initial Delivery Second Generation BlueGene

14 TF/s 4 TB 36 KW

36 racks 0.5 PF/s 144 TB 1.3 MW >8 Day MTBF

435 GF/s 128 GB

Node Card

Compute Card

Chip

850 MHz PPC 450 4 cores/4 threads 13.6 GF/s Peak 8 MB EDRAM 13.6 GF/s 4.0 GB DDR2 13.6 GB/s Memory BW 0.75 GB/s 3D Torus BW

2010 ASC PI Meeting

SEQUOIA

Dawn now in Classified Service and delivering to the program

- •Dawn hardware delivery started 19 Jan 2009. Rapid deployment of 36 racks completed ahead of an aggressive schedule
- Full Synthetic Workload acceptance test successfully completed 26 March 2009
- Twelve codes from Tri-Lab community ran on system during science runs

The first half of DAWN (initial delivery of Sequoia) was received at the TerascaleSimulation Facility in late January, 2009

- Dawn Dedication 27 May 2009
- Now in classified service

As an example of the interdependence of theory and experiment, NIF recently simulated an entire 30° beam quad with improved physics in preparation for Ignition

A mammoth four-week calculation completed June 10 using all of the 500 TF Dawn to support first ignition experiments...

2009 National Medals of Science and of Technology recognize LLNL accomplishments and collaborations

Berni Alder, computational pioneer

Founder of molecular dynamics

 Recognized for large-scale simulations to solve quantum mechanics problems

IBM - Blue Gene

- Series of energy-efficient supercomputers
- LLNL and ANL partnership strongly impacted extreme-scale design and DOE supported IBM R&D

White House

President Obama presented the Medals to Berni Alder and Sam Palmisano (IBM CEO) at a White House Ceremony on October 7, 2009

2010 ASC PI Meeting

Recent Progress Developing Sequoia

- RIT1 release to fabrication
 - Verification of innovative SMP hardware enhancements continuing
 - Prototype fabrication delayed 2.5 months
- Updated power estimates
- Compiler and tools progress with SMP programming models
- Hardware and software simulators being used to evaluate performance
- System software work continuing
 - Innovative SIOD model architected and implemented
 - RHEL for ION, LN and SN almost complete
 - OS Booting and stress test running on hw simulator
- Projecting GO/NOGO decision in October 2010

ASC™

Sequoia Timeline Delivers Petascale Resources to the Program

Sequoia reduction strategy is multifaceted and intended to provide a production multi-petaflop simulation environment

Innovative cost-shared test bed, "Hyperion" to prepare for the massive I/O demand (1+TB/s)

Cost-sharing model supported by LLNL Industrial Partnerships Organization (IPO)

Hyperion Partnership Update

- 2009 HPCWire Award for best "Government & Industry Partnership"
- Moved system to green network and have foreign national collaborators on the machine
- IBM/Houston considering joining partnership
 - Test next release of HPSS at scale
 - Collaborators (Sun) to test Lustre HSM back-end
- Collaboration wants to develop outreach activity to ISV community
- Major IO expansion planned for FY10 for scale testing in preparation for Sequoia

ASC™

Lustre File Systems Grow To Meet Computing Demands

- OCF file systems expanded by 29%
 - Added /p/lscratchd, a 20GB/s, 755 TB file system to support Coastal.
- SCF file systems expanded by 143%
 - Added /p/lscratch2, a 70 GB/s, 2.7 PB file system to support Dawn.
 - Added /p/lscratch4, a 60 GB/s, 2.3 PB file system to meet SCF capacity computational demands.
- Operations improvements using unified Storage Scalable Unit (SSU)
 - Upgraded the Metadata Servers center-wide
 - -Now have identical MDS configuration for all file systems
 - -Improved performance by XX%
 - Reworked oldest file system to modern Storage Scalable Unit
 - -Lustre servers without local disk for OS
 - -Use n+2 parity for Lustre bulk Object Store

Lustre operational improvements over the last year have enable efficiency and improved reliability

- Software and Development:
 - Implemented Failover on our servers
 - Worked extensively with Sun to align our releases

- Operations
 - Extensive training for Operators
 - Leveraged System Admin Group to spread Lustre knowledge.
- Software and Operational efforts reduced off-hours support calls by 50%!

Tri-Laboratory Capacity Cluster (TLCC11) Overview

- Second step in Tri-lab capacity cluster for ASC Program
- Technical
 - Deliver working clusters of multiple sizes to the Program
 - Purchase cost effective balanced commodity SU's
 - Define SU config with room for vendor innovation and differentiation
 - Receiving site works with vendor to aggregate SU's
- Financial
 - Investment for GFY11+12
 - ~\$29 \$50M to purchase SU's (\$29M + options)
 - Single contract with multiple delivery sites
 - SU allocations determined by HQ
 - Provide vendor with flexibility to optimize build+ delivery
 - Long term partnership via shared risk

TLCC11 Procurement

Procurement Strategy:

- Define consistent SU for duration of contract with room for configuration options (memory, clock speed, network, rack power)
- Commit to volume purchase over two years, let vendor optimize supply chain
- Shared risk model for forward pricing of commodities
- Reduce site and applications support costs through Common Computing (hardware and software) Environment

Follow TLCC07 build model:

- Standard SU (HW+SW) with options
- Vendor Partner builds SU with pre-ship test
- Vendor Partner delivers SU to site with post-ship test
- Local site and Vendor Partner aggregate SU's on site

Major focus on delivering capacity to the program while reducing overall Total Cost of Ownership

(TCO)

Example TLCC-11 Node Architecture

2 or 4 or more socket nodes available

- •6-12 core at 2.0-3.0 GHz (95W)
- •4-8 GB DDR3-12800 DIMM, 1-2 slots per channel
- •Node peak is 384 576 GF/s
- •64-256 GB memory (2 5 GB/core)
- •51.2 GB/s memory BW per socket and 204.8 per node
- •12.5+12.5 GB/s IBA 4x EDR BW

ASC.

Target SU Configuration

System Parameters: 162 nodes and 62-93 TF/s per SU

- 384-576 GF/s guad socket 3.0 GHz 6-12 core x86 64 (95W) SMP nodes
- 64-256 GB DDR3 SDRAM
- <3 µs, 25 GB/s MPI latency and Bandwidth over IBA 4x EDR
 - Built from 36-port switches for 4 and 8 SU aggregate cluster configurations
- Support 10 GB/s transfers to Archive over IBA links from Login node.
- No local disk. Remote boot and SRP target for root and swap partitions on RAID5 device for improved RAS
- 4 GB/s POSIX serial I/O to any file system
- IO Bandwidth 24 GB/s delivered parallel I/O performance
- Software for build and acceptance RHEL6, Moab/SLURM, OpenFabrics, MPICH2/OpenMPI, GNU Fortran, C and C++ compiler, Comm Fortran compiler.

TLCC11 Timeline

TLCC11 Current Status

- Technical committee with Tri-lab representation
 - Bi-weekly calls
 - Focus is on Market Survey and Draft SOW
- •Market Survey:
 - TriLab NDA done Sent to vendors 2/5
 - Planning a 2 day "brief-fest" 2/22-23 in Livermore
 - Expecting 14 vendors @1 hr each to present
- Draft SOW:
 - Site facilities updates due next week
 - Software: CCE (Common Cluster Environment) text added
 - HW Technical requirements tbd after market survey

Summary

- Sequoia project has made significant progress in the last year
 - Dawn delivering to the program
 - Sequoia development progressing toward prototype this summer and GO/NOGO in October 2010
- Hyperion project delivering results and will expand to include a data intensive testbed
- TLCC11 procurement underway and progressing
- Lustre operational improvements have significantly streamlined operations and improved reliability
- Multiple LLNL HPC activities won national awards this last year

